全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

棋牌娱乐| 澳门赌博网站| 车险| 至富百家乐官网的玩法技巧和规则| 百家乐分析博彩正网| 百家乐怎么玩请指教| 单张百家乐官网论坛| 24山度数| 大发888真钱游戏平台| 百家乐官网心态研究| 百家乐3宜3忌| 真人赌博网站| 百家乐官网送现金200| 圣保罗百家乐的玩法技巧和规则| 澳门新葡京| 百家乐官网押注最高是多少| 赌百家乐的玩法技巧和规则| 百家乐平台| 百家乐关台| 明水县| 威尼斯人娱乐城网址| 百家乐官网象棋玩法| 百家乐赢利策略| 噢门百家乐官网玩法| 百家乐官网投注法则| 金冠百家乐的玩法技巧和规则 | 百家乐珠盘路| 在线百家乐官网博彩网| 百家乐机器出千| 真钱百家乐五湖四海全讯网| 真人百家乐官网平台排行| 金都娱乐| 试玩区百家乐1000| 百家乐官网计划软件| 网上棋牌赌博| 赌百家乐的方法| 克山县| 百家乐园云鼎赌场娱乐网规则| 疯狂百家乐官网游戏| 百家乐官网合法| 世界顶级赌场酒店|