全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
中骏百家乐官网的玩法技巧和规则 | 百家乐路单破| 大发888游戏平台hg dafa 888 gw| CEO百家乐官网现金网| 百家乐投注方法多不多| 博彩通3333| 百家乐官网平一直压庄| 大发888赌场娱乐网规则| 七胜百家乐官网赌场娱乐网规则| 六合彩138| 百家乐巴厘岛平台| 邵武市| 百家乐平台送彩金| 网上的百家乐官网是真是假| 南通热线棋牌中心| 百家乐投注开户| 菠菜百家乐官网娱乐城| 丽星百家乐的玩法技巧和规则| 漳州市| 水果机定位器| 百家乐筛子游戏| 百家乐官网庄闲分布概率| 免费百家乐计划工具| 678百家乐官网博彩娱乐场开户注册| 澳门美高梅赌场| 百家乐桌码合| 百家乐官网博娱乐赌百家乐官网的玩法技巧和规则 | 易胜博百家乐娱乐城| 百家乐官网视频免费下载| 大发888娱乐真钱游戏 官方| 赌博百家乐官网赢钱方法| 利澳娱乐城注册| 职业百家乐的玩法技巧和规则| 百家乐官网存200送200| 澳门百家乐官网网上| 十六浦娱乐城官网| 威尼斯人娱乐场 28| 百家乐网站是多少| 百家乐经验之谈| 钱隆百家乐官网软件| 百家乐游戏|