全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

【百家大講堂】第243期:膠體半導體納米晶體的化學設計與應用

發布日期:2019-09-26

講座題目:膠體半導體納米晶體的化學設計與應用

We Play with Chemistry to Design Colloidal Semiconductor Nanocrystals

報 告 人:Vladimir Lesnyak

時   間:2019年10月9日(周三)14:30-16:30

地   點:中關村校區求是樓426會議室

主辦單位:研究生院、材料學院

報名方式:登錄北京理工大學微信企業號---第二課堂---課程報名中選擇“【百家大講堂】第243期:膠體半導體納米晶體的化學設計與應用”

【主講人簡介】

  Vladimir Lesnyak,現任德累斯頓工業大學高級研究員,Vladimir Lesnyak于2005年獲得白俄羅斯國立大學高分子化學博士學位,2006-2012年在代爾夫特理工大學從事博士后研究,合作導師為A. Eychmüller教授,2012-2015年在意大利理工學院進行研究,合作導師為L. Manna教授。2016年入職德累斯頓工業大學。Vladimir Lesnyak研究員目前作為Frontiers in Chemistry主編,ISRN Nanomaterials Journal編委,已經發表了90多篇論文,包括Chem. Soc. Rev., J. Am. Chem. Soc., ACS Nano, Nano Lett., Nano Today, Adv. Mater., Angew. Chem等。專利1項,合著專著3章,他引次數3700余次,H因子33。Vladimir Lesnyak研究員目前的研究方向主要為納米材料的膠體合成調控,納米材料的物理化學特性以及納米粒子自組裝與多聚物的雜化。

 

Vladimir Lesnyak is currently a senior research scientist at Dresden University of Technology.He received his doctor's degree in polymer chemistry from belarusian state university in 2005, and from 2006 to 2012, he did postdoctoral research in Technische Universiteit Delft with professor a. Eychmuller as co-supervisor.From 2012 to 2015 he conducted research in the Istituto Italiano di Tecnologia with professor L. Manna as co-supervisor.He entered Dresden University of Technology at 2016.Vladimir Lesnyak is research topic editor and Editorial board member at Frontiers in Chemistry, ISRN Nanomaterials journal respectively.Up to now, he has published more than 90 papers including Chem. Soc. Rev., J. Am. Chem. Soc., ACS Nano, Nano Lett., Nano Today, Adv. Mater., Angew. Chem and others, 1 patent, 3 book chapters. The papers have already received about 3700 citations,H-index=33.His current research focuses on the regulation of colloidal synthesis of nanomaterials, physical and chemical properties of nanomaterials, self-assembly of nanoparticles and hybridization of polymers.

【講座信息】

  膠體半導體納米材料——量子點經歷了近十年的研究,已經逐漸走向商業化。其最重要因素主要為兩點:(1)其具有尺寸依賴的獨特光電性能(2)基于液相合成的簡易方法。基于上述兩點,該類材料吸引了不同領域的的研究者的高度關注。

  本報告主要總結了不同膠體納米半導體的研究進展,主要著重于陽離子交換,膠體框架下的摻雜,等離子共振效應以及與聚合物交聯達到表面、光譜的調控、在太陽能聚光器中的應用以及高性能薄膜的研究。此外,還將介紹半導體納米晶體作為場效應晶體管的有源元件的潛在應用。

 

Colloidal semiconductor nanocrystals (also known as quantum dots) have evolved during last few decades from fundamental theoretical concepts to real commercial products (one of the recent examples is a line-up of Samsung QLED TVs in which quantum dots are employed as color converters) owing to intensive efforts of a plethora of research groups worldwide. These nanomaterials benefit on one hand from their unique size-dependent optoelectronic properties, based on quantum confinement. On the other hand, their solution-based synthesis is an amazingly simple process, which can be realized in nearly any chemistry lab. Both these factors greatly promote investigation of semiconductor nanocrystals making this field truly interdisciplinary, involving chemists, physicists, biologists, material researchers, engineers, to name the main players.
 

In this talk, our recent work on the colloidal synthesis of different semiconductor nanocrystals will be summarized. Particular attention will be paid to cation exchange reactions, as a convenient method for modifying the chemical composition of inorganic cores as well as to ligand exchange, as an approach to alter their surface. In the framework of the direct colloidal synthesis a novel approach do dope CdSe nanoplatelets with mercury in order to shift their fluorescence to the red and near-infrared region will be presented. Furthermore, integration of fluorescent semiconductor nanocrystals into composites with polymers, which may be used as luminescent solar concentrators, will be discussed. Quite novel and intensively developed aspect of semiconductor nanoparticles, namely localized surface plasmon resonance, will be touched upon on the example of copper chalcogenide nanocrystals with demonstration of electrochemical modulation of their light absorption and assembly into highly conductive thin films. In addition, a potential application of semiconductor nanocrystals as an active component in field-effect transistors will be shown.


必胜娱乐| 彩会百家乐官网游戏| 尊龙百家乐官网娱乐网| 百家乐官网麻关于博彩投注 | 百家乐没有必胜| 娱百家乐下载| 大发888真人真钱| 优博注册| 百家乐官网园首选| 百家乐规律和方法| 网络百家乐官网必胜投注方法 | 大发888娱乐场下载iyou qrd| 大发888网站是多少| 百家乐官网斗地主在哪玩| 优惠搏百家乐的玩法技巧和规则| 网络百家乐游戏机怎么破解| 加州百家乐的玩法技巧和规则 | 战神娱乐| 财神百家乐官网的玩法技巧和规则 | 万豪娱乐网| 百家乐闲庄概率| 现金网| 海立方百家乐的玩法技巧和规则 | 百家乐官网玩法和技巧| 真人百家乐新开户送彩金| 威尼斯人娱乐城优惠| 菲律宾百家乐官网的说法| 巴宝莉百家乐的玩法技巧和规则| 狼2老虎机清零密码| 百家乐官网开发公司| 百家乐做庄家必赢诀窍| 百家乐官网种类| 博彩现金开户| 百家乐鸿泰棋牌| 镇巴县| 百家乐官网超级市场| 盈得利百家乐娱乐城| 百家乐官网投注心得| 网上百家乐的玩法技巧和规则 | 百家乐官网韩泰阁| 娱网棋牌大厅|