全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网最好投注| 大丰收娱乐城官网| 大发888娱乐场下载ypu rd| 百家乐官网风云人物| 皇冠比分| 百家乐官网游戏算牌| 单耳房做生意的风水| 辽中县| 月亮城百家乐的玩法技巧和规则 | 缅甸百家乐官网视频| 大发888赢钱| 伟博百家乐官网现金网| 真人百家乐大转轮| 百家乐官网软件编辑原理| 威尼斯人娱乐城图| 网络百家乐官网可靠吗| 百家乐真人游戏攻略| 闵行区| 澳门百家乐是骗人的| 哪个百家乐官网投注平台信誉好 | 任我赢百家乐官网软件| 百家乐高科技| 仁怀市| 威尼斯人娱乐城网络博彩| 百家乐官网国际娱乐网| 百家乐正负计| 商河县| 明珠线上娱乐| 澳门百家乐十大缆| 网上百家乐官网哪里| 真人游戏下载| 关于百家乐官网切入点| 大发888sut8| bbin赌场| 百家乐决战推筒子| 百家乐官网玩法介绍图片| 炉霍县| 大发888游戏备用网址| 百家乐备用网址| 网络百家乐官网免费试玩| 皇冠在线娱乐|