全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐外挂| 庐江县| 大发888官方6222.c| 澳门百家乐官网怎玩| 百家乐真人游戏娱乐网| 百家乐分析软件骗人| 利来| 信誉百家乐平台| 金榜百家乐官网现金网| 百家乐官网网上真钱娱乐场开户注册 | 大发888娱乐城客户端迅雷下载| 大发888特惠代码| 百家乐官网赢谷输缩| 百家乐十佳投庄闲法| 大发888真人娱乐场| 折式百家乐官网赌台| 汇丰百家乐的玩法技巧和规则| 广平县| 阳宅24方位判断方法| 大发888娱乐场下载 zhldu| 百家乐官网赢钱皇冠网| 杨公24山日课应验诀| 交城县| 大发888真钱游戏玩法| 九州百家乐官网的玩法技巧和规则 | 粤港澳百家乐官网娱乐网| 爱赢百家乐的玩法技巧和规则| 尊龙国际网上娱乐| 百家乐官网网哪一家做的最好呀| 大发888充值卡| 百家乐视频游戏世界| 百家乐官网走势图备用网站| bet365备用网| 联合百家乐的玩法技巧和规则 | 百家乐官网赌场走势图| 亚洲百家乐新全讯网| 六合彩资料| 御匾会百家乐官网娱乐城| 博九网| 大发888娱乐场下载删除 | 百家乐官网小路单图解|